Processing math: 100%
Subalgebra A15A15
37 out of 37
Computations done by the calculator project.

Subalgebra type: A15 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A14 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: A15

Elements Cartan subalgebra scaled to act by two by components: A15: (1, 1, 1, 1, 1): 2, (0, 0, 0, 0, -1): 2, (0, 0, 0, -1, 0): 2, (0, 0, -1, 0, 0): 2, (0, -1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 35.
Negative simple generators: g15, g5, g4, g3, g2
Positive simple generators: g15, g5, g4, g3, g2
Cartan symmetric matrix: (2100012100012100012100012)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100012100012100012100012)
Decomposition of ambient Lie algebra: Vω1+ω5
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 1) ; the vectors are over the primal subalgebra.g1
weightω1+ω5
Isotypic module decomposition over primal subalgebra (total 1 isotypic components).
Isotypical components + highest weightVω1+ω5 → (1, 0, 0, 0, 1)
Module label W1
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g1
g14
g6
g11
g12
g10
g7
g8
g9
g13
g2
g3
g4
g5
g15
h2
h3
h4
h5
h5+h4+h3+h2+h1
g3
2g2
g4
g5
g15
g8
g7
g9
g13
g12
g11
g10
g6
g14
g1
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1+ω5
ω1+ω2+ω5
ω1+ω4ω5
ω2+ω3+ω5
ω1+ω2+ω4ω5
ω1+ω3ω4
ω3+ω4+ω5
ω2+ω3+ω4ω5
ω1+ω2+ω3ω4
ω1+ω2ω3
ω4+2ω5
ω3+2ω4ω5
ω2+2ω3ω4
ω1+2ω2ω3
2ω1ω2
0
0
0
0
0
ω32ω4+ω5
ω42ω5
ω22ω3+ω4
ω12ω2+ω3
2ω1+ω2
ω2ω3ω4+ω5
ω3ω4ω5
ω1ω2ω3+ω4
ω1ω2+ω3
ω1ω2ω4+ω5
ω2ω3ω5
ω1ω3+ω4
ω1ω4+ω5
ω1ω2ω5
ω1ω5
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1+ω5
ω1+ω2+ω5
ω1+ω4ω5
ω2+ω3+ω5
ω1+ω2+ω4ω5
ω1+ω3ω4
ω3+ω4+ω5
ω2+ω3+ω4ω5
ω1+ω2+ω3ω4
ω1+ω2ω3
ω4+2ω5
ω3+2ω4ω5
ω2+2ω3ω4
ω1+2ω2ω3
2ω1ω2
0
0
0
0
0
ω32ω4+ω5
ω42ω5
ω22ω3+ω4
ω12ω2+ω3
2ω1+ω2
ω2ω3ω4+ω5
ω3ω4ω5
ω1ω2ω3+ω4
ω1ω2+ω3
ω1ω2ω4+ω5
ω2ω3ω5
ω1ω3+ω4
ω1ω4+ω5
ω1ω2ω5
ω1ω5
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+ω5Mω4+2ω5Mω3+ω4+ω5Mω2+ω3+ω5Mω1+ω2+ω5M2ω1ω2Mω1+ω2ω3Mω1+ω3ω4Mω1+ω4ω5Mω1ω2ω4+ω5Mω2ω3ω4+ω5Mω32ω4+ω5Mω1ω2ω3+ω4Mω22ω3+ω4Mω12ω2+ω35M0Mω1+2ω2ω3Mω2+2ω3ω4Mω1+ω2+ω3ω4Mω3+2ω4ω5Mω2+ω3+ω4ω5Mω1+ω2+ω4ω5Mω1ω4+ω5Mω1ω3+ω4Mω1ω2+ω3M2ω1+ω2Mω1ω2ω5Mω2ω3ω5Mω3ω4ω5Mω42ω5Mω1ω5
Isotypic characterMω1+ω5Mω4+2ω5Mω3+ω4+ω5Mω2+ω3+ω5Mω1+ω2+ω5M2ω1ω2Mω1+ω2ω3Mω1+ω3ω4Mω1+ω4ω5Mω1ω2ω4+ω5Mω2ω3ω4+ω5Mω32ω4+ω5Mω1ω2ω3+ω4Mω22ω3+ω4Mω12ω2+ω35M0Mω1+2ω2ω3Mω2+2ω3ω4Mω1+ω2+ω3ω4Mω3+2ω4ω5Mω2+ω3+ω4ω5Mω1+ω2+ω4ω5Mω1ω4+ω5Mω1ω3+ω4Mω1ω2+ω3M2ω1+ω2Mω1ω2ω5Mω2ω3ω5Mω3ω4ω5Mω42ω5Mω1ω5

Semisimple subalgebra: W_{1}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 612.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (283.33, 679.17)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (266.67, 745.83)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (250.00, 712.50)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (233.33, 679.17)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (216.67, 645.83)




Made total 612 arithmetic operations while solving the Serre relations polynomial system.