Highest vectors of representations (total 1) ; the vectors are over the primal subalgebra. | g1 |
weight | ω1+ω5 |
Isotypical components + highest weight | Vω1+ω5 → (1, 0, 0, 0, 1) | ||||||||||||||||||||||||||||||||||||
Module label | W1 | ||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1+ω5 −ω1+ω2+ω5 ω1+ω4−ω5 −ω2+ω3+ω5 −ω1+ω2+ω4−ω5 ω1+ω3−ω4 −ω3+ω4+ω5 −ω2+ω3+ω4−ω5 −ω1+ω2+ω3−ω4 ω1+ω2−ω3 −ω4+2ω5 −ω3+2ω4−ω5 −ω2+2ω3−ω4 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 0 0 ω3−2ω4+ω5 ω4−2ω5 ω2−2ω3+ω4 ω1−2ω2+ω3 −2ω1+ω2 ω2−ω3−ω4+ω5 ω3−ω4−ω5 ω1−ω2−ω3+ω4 −ω1−ω2+ω3 ω1−ω2−ω4+ω5 ω2−ω3−ω5 −ω1−ω3+ω4 −ω1−ω4+ω5 ω1−ω2−ω5 −ω1−ω5 | ||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1+ω5 −ω1+ω2+ω5 ω1+ω4−ω5 −ω2+ω3+ω5 −ω1+ω2+ω4−ω5 ω1+ω3−ω4 −ω3+ω4+ω5 −ω2+ω3+ω4−ω5 −ω1+ω2+ω3−ω4 ω1+ω2−ω3 −ω4+2ω5 −ω3+2ω4−ω5 −ω2+2ω3−ω4 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 0 0 ω3−2ω4+ω5 ω4−2ω5 ω2−2ω3+ω4 ω1−2ω2+ω3 −2ω1+ω2 ω2−ω3−ω4+ω5 ω3−ω4−ω5 ω1−ω2−ω3+ω4 −ω1−ω2+ω3 ω1−ω2−ω4+ω5 ω2−ω3−ω5 −ω1−ω3+ω4 −ω1−ω4+ω5 ω1−ω2−ω5 −ω1−ω5 | ||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1+ω5⊕M−ω4+2ω5⊕M−ω3+ω4+ω5⊕M−ω2+ω3+ω5⊕M−ω1+ω2+ω5⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1+ω3−ω4⊕Mω1+ω4−ω5⊕Mω1−ω2−ω4+ω5⊕Mω2−ω3−ω4+ω5⊕Mω3−2ω4+ω5⊕Mω1−ω2−ω3+ω4⊕Mω2−2ω3+ω4⊕Mω1−2ω2+ω3⊕5M0⊕M−ω1+2ω2−ω3⊕M−ω2+2ω3−ω4⊕M−ω1+ω2+ω3−ω4⊕M−ω3+2ω4−ω5⊕M−ω2+ω3+ω4−ω5⊕M−ω1+ω2+ω4−ω5⊕M−ω1−ω4+ω5⊕M−ω1−ω3+ω4⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω5⊕Mω2−ω3−ω5⊕Mω3−ω4−ω5⊕Mω4−2ω5⊕M−ω1−ω5 | ||||||||||||||||||||||||||||||||||||
Isotypic character | Mω1+ω5⊕M−ω4+2ω5⊕M−ω3+ω4+ω5⊕M−ω2+ω3+ω5⊕M−ω1+ω2+ω5⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1+ω3−ω4⊕Mω1+ω4−ω5⊕Mω1−ω2−ω4+ω5⊕Mω2−ω3−ω4+ω5⊕Mω3−2ω4+ω5⊕Mω1−ω2−ω3+ω4⊕Mω2−2ω3+ω4⊕Mω1−2ω2+ω3⊕5M0⊕M−ω1+2ω2−ω3⊕M−ω2+2ω3−ω4⊕M−ω1+ω2+ω3−ω4⊕M−ω3+2ω4−ω5⊕M−ω2+ω3+ω4−ω5⊕M−ω1+ω2+ω4−ω5⊕M−ω1−ω4+ω5⊕M−ω1−ω3+ω4⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω5⊕Mω2−ω3−ω5⊕Mω3−ω4−ω5⊕Mω4−2ω5⊕M−ω1−ω5 |